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We have studied steady flow in a two-dimensional channel in which a section of
one wall has been replaced by an elastic membrane under dimensionless longitudinal
tension T but possessing no bending stiffness. The dimensionless upstream transmural
pressure takes a value Pext, the membrane section is assumed to be long compared
with the channel width and its deformation is assumed to remain within the viscous
boundary layers. Standard high-Reynolds-number asymptotic methods are applied
to arrive at a coupled boundary-layer-membrane problem. A non-zero cross-stream
pressure gradient, leading to flow perturbations upstream of the membrane, is
included in the analysis.

Linearization of the boundary-layer problem yields firstly an analytic solution at
non-zero Pext and asymptotically high T . This takes the form of an expansion in T −1

for which the membrane shape and the flow decouple at each order. Extension of
this solution branch to smaller values of the tension suggests a singularity at finite
tension, where the deformation of the membrane becomes very large. Secondly, when
the upstream transmural pressure is zero the trivial solution is valid for all values
of the tension. However, we also obtain eigensolutions where the membrane tension
plays the role of eigenvalue. There are thus non-trivial solutions of the problem at
these particular values of the tension.

The nonlinear coupled boundary-layer–membrane problem is then solved
numerically. A finite-difference, Keller-box, marching scheme is used, together with a
shooting algorithm to satisfy the boundary condition at the downstream end of the
membrane. This reveals a variety of different solutions, showing the relation between
the two cases captured by the linearized analysis and demonstrating the existence of
parameter ranges for which no solutions exist under the specified constraints. Such
parameter ranges appear not to exist if the downstream, rather than the upstream,
transmural pressure is held constant.

The relation to our results of solutions obtained by solving the two-dimensional
Navier–Stokes equations directly is discussed. Reasonable agreement between
parameters is obtained, once allowance is made for the finite Reynolds number and
membrane length in those computations.

1. Introduction
When fluid flows through a finite length of collapsible tube, mounted at its ends on

rigid tubes and surrounded by a pressurized chamber, a wide range of behaviour is
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observed. For example, even in steady conditions the relationship between the pressure
drop along the collapsible segment, �p̂, and the flow rate Q̂ may be concave to the
Q̂-axis (‘pressure-drop limitation’), if the downstream transmural (external minus
internal) pressure is held constant as Q̂ is varied, but concave to the �p̂-axis (‘flow-
rate limitation’) if the upstream transmural pressure is held constant. Moreover,
in almost every experiment that has been performed on such a system, there are
large areas of parameter space in which a rich variety of self-excited oscillations is
observed, for values of the Reynolds number in excess of 100–200; see Conrad (1969)
and Bertram, Raymond & Pedley (1991) for well-documented examples.

As yet a full computational simulation of this dynamical system, time-dependent
and three-dimensional, has not proved feasible. In recent work by Hazel & Heil (2003),
however, a thin-wall model for a collapsible tube, constrained to buckle into a two-
lobed cross-section, is coupled to a steady three-dimensional Navier–Stokes solver.

Attempts to understand the mechanisms of the self-excited oscillations began
with lumped-parameter (zero-dimensional) models governed by ordinary differential
equations, in which very little of the mechanics could be rationally described (e.g.
Katz, Chen & Moreno 1969), moved on to one-dimensional models in infinite tubes,
which could not be coupled to the rest of the system (e.g. Shapiro 1977; Kamm &
Shapiro 1979), and then to one-dimensional models in finite tubes, which could (e.g.
Cancelli & Pedley 1985; Jensen & Pedley 1989; Jensen 1990). Self-excited oscillations
were predicted and bore some resemblance to the observations, but still too much
of the detailed mechanics was incorporated in an ad hoc manner that prevented
confident quantitative comparison with experiment.

Luo & Pedley (1995, 1996) and Cai & Luo (2003) tried to provide a complete
computational description of a two-dimensional version of the system that is in prin-
ciple (though not yet in practice) realizable experimentally. This version (see figure 1)
consists of a parallel-sided channel of which a segment of one wall is replaced by a
membrane under constant tension, T̂ , but with no bending stiffness or inertia. The
fluid flow is governed by the two-dimensional Navier–Stokes equations. The external
pressure p̂ext was fixed and positive relative to the pressure at the downstream end
of the system, and the inflow rate was given in terms of the Reynolds number Re.
(The different findings obtained when the upstream pressure is taken as reference
are described in a later paper (Luo & Pedley 2000).) Steady flow was investigated
first, and it was found (unexpectedly) that the variation in the maximum indentation,
ymax , with T̂ at given Re (or Re at given T̂ ) agreed quite well with the corresponding
one-dimensional model. Also, it was found that, as T̂ was reduced for fixed Re � 150,
self-excited oscillations arose when T̂ fell below a critical value T̂c. At first these
were relatively small-amplitude sinusoidal oscillations, suggesting a supercritical Hopf
bifurcation but, as T̂ was further reduced, additional bifurcations were seen, showing
that the computational dynamical system, like the experimental one, had an intricate
structure. However, the detailed mechanism by which the oscillations were generated
and maintained remained unclear. Cancelli & Pedley (1985) had postulated that a
crucial quantity was the energy dissipation associated with the separated jet from the
narrowest point, but they modelled it quasi-steadily. Luo & Pedley (1996) therefore
computed the energy dissipation per unit volume in the flow, but found in most cases
that it was a maximum in the viscous boundary layers upstream of the narrowest
point. Pedley & Luo (1998) suggested that there might be a coupling between the
membrane oscillation and the vorticity waves generated in the channel downstream,
and this would involve the process of flow separation, which computed streamline
plots showed to be far from quasi-steady.
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To shed further light it is desirable to have a mathematical model of the two-
dimensional system which avoids the ad hoc assumptions of the one-dimensional
models and which can be solved analytically and interrogated in detail in some
asymptotic limit. Pedley (1992) published a model based on lubrication theory; this
model is a rational approximation but is inertia free and cannot yield oscillations.
The only other hope seems to be an asymptotic theory for high Reynolds number and
small membrane displacement. This we embark upon here. Of course, we do not expect
an asymptotic analysis to provide a full description of every mode of disturbance that
could arise in a collapsible channel at infinitely large Reynolds number. In reality,
the flow would become turbulent via a variety of fluid-dynamic instabilities, some
of which would be modified by the presence of a compliant boundary but most of
which would exist even if the boundary were fixed (see Gajjar & Türkyilmazog̃lu
2000, for example). Instead, we seek a flow that can be thought of as the high-
Reynolds-number extension of the branch of solutions to the full problem containing
the steady flows and particular self-excited oscillations computed by Luo & Pedley
(1995, 1996).

Even with the constraints of high Reynolds number and small membrane dis-
placement, the problem is complex and various approaches are possible. Jensen & Heil
(2003) took the limit of large membrane tension for which, in the absence of a mean
throughflow and of viscosity, the system exhibits a set of normal-mode oscillations
of high frequency. The lowest of these takes the form of a ‘sloshing’ mode in which
in-and-out vibrations of the membrane are accompanied by longitudinal flows in the
up- and downstream rigid-channel segments. The introduction of viscosity provides
damping, in Stokes layers on the channel walls, and the introduction of a moderate
(but still high-Reynolds-number) throughflow provides a source of energy that can
be converted into growth of the oscillations by Reynolds stresses in the Stokes layers.
Jensen & Heil were able to calculate, both asymptotically and computationally, a
critical Reynolds number for instability at a given membrane tension (or vice versa),
but they found that there would be no instability if the upstream rigid segment were
longer than the downstream one or if the upstream inflow rate were fixed instead of
the upstream pressure. The oscillations computed by Luo & Pedley (1996) arose even
when the inflow rate was fixed, however, implying a different instability mechanism.

Here we embark on a different asymptotic approach and restrict our attention to
steady flows. The approach is based firmly on the work of Smith (1976a, b), who
pioneered the analysis of high-Reynolds-number internal flows in indented channels.
Previous attempts to couple such internal boundary-layer flows with compliant walls
were made by Tutty (1984) and by Rothmayer (1989). Recent review articles, e.g.
Heil & Jensen (2003) and Grotberg & Jensen (2004), give further discussion of flow
and oscillations in collapsible tubes.

An outline of the present paper is as follows. The steady-flow structure is described
and the coupled boundary-layer–membrane problem is formulated in § 2. The problem
can be solved (essentially) analytically for very small membrane displacement (which
requires either large tension or small transmural pressure difference), and the solution
is provided in § 3. Findings include the multiple non-uniqueness of the flow for very
small tension and transmural pressure difference. Then in § 4 the nonlinear boundary-
layer problem is solved numerically, confirming the finding of multiple non-uniqueness
for given tension and upstream transmural pressure difference. The structure of the
solution space is discussed and the effect of fixing the transmural pressure at the
downstream, rather than the upstream, end is also considered.
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Figure 1. Diagram of the two-dimensional channel, width a, all other quantities being
dimensionless, showing an incoming Poiseuille flow. The function F (x) is used to represent the
deformation of the section of membrane and the position of the solid wall that forms the rest
of the lower boundary.

2. Formulation
2.1. Non-dimensionalization and scaling

The geometry under consideration is shown in figure 1, and is that of a channel of
width a with a small-amplitude flexible deformation, of finite length λa where λ � 1,
in one wall. We then use a Cartesian coordinate system (x̂, ŷ), where x̂ is aligned
with the channel and ŷ forms the transverse coordinate, with velocity components
û, v̂ respectively and pressure p̂. The problem is non-dimensionalized as follows:

(x̂, ŷ) = (λax, ay), (û, v̂) = Ū (u, v/λ), p̂ = ρŪ 2p, (2.1)

where Ū is the mean velocity far upstream and ρ is the density of the fluid.
Since only steady configurations of the channel are considered, the position of the

lower boundary of the flow domain is given by

y = εF (x),

where ε � 1; the function F is constrained to be zero when x < 0 or x > 1, where it
represents solid wall, and is everywhere continuous. The flow is then governed by the
steady dimensionless Navier–Stokes equations, with the long streamwise length scale
λa given above:

ux + vy = 0, (2.2a)

λ−1(uux + vuy) = −λ−1px + Re−1(λ−2uxx + uyy), (2.2b)

λ−1(uvx + vvy) = −λpy + Re−1(λ−2vxx + vyy), (2.2c)

where Re = Ūa/ν is the Reynolds number and ν is the kinematic viscosity of the
fluid.

The boundary conditions are those of zero penetration and no slip,

u = v = 0 on y = 1, (2.3a)

u = v = 0 on y = εF, (2.3b)

at the walls. The velocity profile is taken to be parabolic far upstream,

u → u0(y) = 6y(1 − y) as x → −∞, (2.3c)

v → 0 as x → −∞, (2.3d)
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where the factor 6 is chosen to make the average velocity 1. The flow is assumed to
remain a small perturbation to Poiseuille flow, of O(ε), throughout the domain.

The membrane is assumed to be under tension and to have no bending stiffness, so
the pressure field is coupled with the position of the lower boundary via

p(x, 0) − pext = T̄ ε Fxx 0 � x � 1,

F ≡ 0 otherwise,

}
(2.4)

where pext is the dimensionless pressure external to the channel and T̄ , the
dimensionless tension, is assumed constant over the membrane to the order at which
we are working. T̄ is related to the dimensional tension T̂ via

T̂ = T̄ ρŪ 2λ2a. (2.5)

The dimensionless dissipation per unit volume, using the scalings (2.1), is

φ =
1

Re

((
uy +

vx

λ2

)2

− 4uxvy

λ2

)
. (2.6)

2.2. Core flow

Following Smith (1976a), with the notation of Pedley (2000), we express the inviscid
flow in the core of the channel as an asymptotic expansion in powers of ε and see that
the effect of the wall deformation upon the inviscid core flow is simply a streamline
displacement of magnitude −εA(x):

u = u0(y) + εA(x)u′
0(y) + O(ε2), (2.7a)

v = −εAx(x)u0(y) + O(ε2), (2.7b)

p = −12λx

Re
+ ε2

(
P̃ (x) +

Axx

λ2ε

∫ y

0

u2
0(y

′) dy ′
)

+ O(ε3), (2.7c)

where A(x) and P̃ (x) are unknown functions and 12λx/Re represents the Poiseuille
pressure gradient. The second term within the large parentheses represents the cross-
stream pressure gradient and is negligible if λ2ε � 1; we assume that λ2ε is O(1) or
larger.

Substituting the expansions (2.7) into (2.6), we obtain the dissipation in the core,

φ =
1

Re

(
u′2

0 + 2εu′
0u

′′
0A + O

(
ε2,

ε

λ2

))
.

Integrating this over the region x ∈ (x0, x1), y ∈ (εF, 1), we obtain the total dissipation
arising from the core flow,

12

Re
(x1 − x0) − 12ε

Re

(
3

∫ 1

0

F (x) dx + 2

∫ x1

x=x0

A(x) dx

)
+ O

(
ε2

Re
,

ε

λ2Re

)
,

where the leading-order term is simply the dissipation arising from the unperturbed
Poiseuille flow.

2.3. Boundary layers

The velocity perturbation in (2.7a) does not satisfy the no-slip condition on the
channel walls so there must be a viscous boundary layer on each. For the viscous and
inertial terms to balance, the thickness of the boundary layer must be O((λ/Re)1/3).
We assume that the wall deformation remains within the viscous boundary layer in
order that the expansions (2.7) may be uniformly asymptotic over the entire core
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region and hence that

ε =

(
λ

Re

)1/3

, (2.8)

which also ensures that the pressure gradient appears at the same order as the
advective terms in the boundary-layer equations, (2.11), (2.13) below. The Poiseuille
pressure gradient is then an O(ε3) term, so the rescalings for the upper (rigid-
wall) and lower (deformed-wall) boundary layers, where the latter includes a Prandtl
transformation, are given by

1 − y = εz, u = εU, v = −ε2V, p = ε2P (x), (2.9)

y − εF = εz̃, u = εŨ , v = ε2Ṽ + εuFx, p = ε2P̃ (x). (2.10)

We thus obtain a pair of coupled boundary-layer problems: on the plane wall

Ux + Vz = 0, (2.11a)

UUx + V Uz = −Px + Uzz, (2.11b)

U = V = 0 at z = 0, (2.12a)

U → 6z, V → 0 as x → −∞, (2.12b)

U ∼ 6(z − A) as z → ∞; (2.12c)

and on the deformed wall

Ũx + Ṽz̃ = 0, (2.13a)

Ũ Ũx + Ṽ Ũz̃ = −P̃x + Ũz̃z̃, (2.13b)

Ũ = Ṽ = 0 at z̃ = 0, (2.14a)

Ũ → 6z̃, Ṽ → 0 as x → −∞, (2.14b)

Ũ ∼ 6(z̃ + F + A) as z̃ → ∞, (2.14c)

where the boundary conditions in each case specify no-slip and no penetration on
the wall or membrane, the upstream condition and the condition of matching to the
core flow, respectively.

The relation between the pressure in the two boundary layers is seen from (2.7c) to
be

P = P̃ + σAxx, (2.15)

where σ = 6/5λ2ε is the cross-stream pressure-gradient parameter. Note that the
scaling specified for ε above, (2.8), implies that

σ =
6Re1/3

5λ7/3
,

and hence the requirement that σ and ε both be small implies that Re1/7 � λ � Re.
A non-zero cross-stream pressure gradient implies that σ = O(1), i.e. λ = O(Re1/7).

If the cross-stream pressure gradient is negligible, i.e. σ � 1, then the pressures in
the two boundary layers are the same. Equations (2.11a, b), and (2.12a, b) for U and
V are then identical to (2.13a, b), and (2.14a, b) for Ũ and Ṽ , so if the boundary-layer
equations have a unique solution for a given wall deformation (and hence, in this case,
a given pressure field) the two matching conditions must also be identical. Equating the
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matching conditions (2.12c) and (2.14c) we then see that, as found by Smith (1976a),

A(x) = −F (x)/2, (2.16)

and the problem has been reduced to that of the flow in a single boundary layer
coupled to the deformation of the membrane.

The dissipation in the upper boundary layer is, from (2.6) and (2.9),

φ =
1

Re

(
U 2

z + O

(
ε2

λ2

))
and similarly in the lower boundary layer. If Uz is O(1) over an O(1) area in (x, z)-
space, then the dissipation in the boundary layer is O(1/Re), which is of the same
order as the Poiseuille dissipation.

Finally, we rewrite the membrane equation in the form

P̃ − Pext = T Fxx 0 � x � 1,

F ≡ 0 otherwise,

}
(2.17)

where pext = ε2Pext and T̄ = εT . Note that this implies |pext| /T̄ = O(ε) = O ((λ/
Re)1/3).

A choice must be made of where to fix the fluid pressure, upstream or downstream.
This makes a difference experimentally, as described in the introduction, and we shall
investigate that difference here. For now we take the upstream fluid pressure to be
fixed: P̃ (−∞) = 0.

2.3.1. Linearization of the boundary-layer equations

In § 3 we will solve a linearized form of the boundary-layer equations: if the
deformation F is small, this implies that the perturbations to the internal pressure
and velocity scales are similarly small. Introducing a small parameter h, we write

F (x) = hF(x), P (x) = hP(x), U (x, z) = 6z + hU(x, z), V (x, z) = hV(x, z),

A(x) = hA(x), P̃ (x) = hP̃(x), Ũ (x, z̃) = 6z̃ + hŨ(x, z̃), Ṽ (x, z̃) = hṼ(x, z̃).
(2.18)

With a further transformation to express the equations in terms of the shear-rate
perturbations,

τ = Uz, τ̃ = Ũz̃,

the linearized boundary-layer equations may be cast into the following form:
6zτ x = τ zz, (2.19a)

τ z = Px at z = 0, (2.19b)

τ → 0 as z → ∞, (2.19c)

τ → 0 as x → −∞, (2.19d)∫ ∞

0

τ dz = −6A (2.19e)

and

6z̃τ̃x = τ̃z̃z̃, (2.20a)

τ̃z̃ = P̃x at z̃ = 0, (2.20b)

τ̃ → 0 as z̃ → ∞, (2.20c)

τ̃ → 0 as x → −∞, (2.20d)∫ ∞

0

τ̃ dz̃ = 6(F + A). (2.20e)
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Equations (2.19b) and (2.20b) were derived by evaluating the streamwise momentum
equations, (2.11b), (2.13b), on z = 0 and z̃ = 0 respectively.

Applying the rescalings (2.18) to the pressure relation (2.15), we obtain the relation
between the pressures in the two boundary layers,

P = P̃ + σAxx. (2.21)

The membrane equation (2.17) becomes

hP − Pext = hT Fxx 0 � x � 1,

F ≡ 0 otherwise. (2.22)

For consistency this requires |Pext/T | = O(h), or
∣∣pext/T̄

∣∣ = O(h(λ/Re)1/3).

3. Solution of the linearized problem
We discuss first the solution of the linearized boundary-layer equations for the flow

past a given wall deformation F (x), as obtained by Smith (1976a), before analysing
the coupling of the flow to the membrane position both in the case when the external
pressure is zero (i.e. equal to the internal pressure at the upstream end of the flow
domain) and when it is non-zero.

3.1. Linearized boundary-layer flow past a prescribed deformation

The linearized boundary-layer equations may be solved for A, P, P̃, τ (x, 0) and
τ̃ (x, 0) in terms of the membrane displacement F using Fourier-transform methods as
described by Smith (1976 b). Under the Fourier transform

φ∗(k, z) =

∫ ∞

−∞
φ(x, z)e−ikx dx,

(2.19a) reduces to the Airy equation in ζ = (6ik)1/3z, and we may thus write

τ ∗(k, z) = B∗(k)Ai(ζ ), (3.1)

for some unknown function B∗(k), where the requirement (2.19c) that τ → 0 as z → ∞
implies that τ ∗ → 0 as |ζ | → ∞ and hence that the argument of ζ lies in the range
(−π/3, π/3). Thus the k-plane has a branch-cut along the positive imaginary axis.

Substitution of (3.1) into the boundary and matching conditions (2.19b) and (2.19e)
and elimination of the unknown function B∗(k) allows us to express the transform of
the pressure variable in terms of that of the core streamline perturbation:

P∗ =
γ

(ik)1/3
A∗, (3.2)

where the positive constant γ takes the value −18 × 62/3Ai′(0); Ai′ is the derivative
of Ai.

A further pair of equations may be obtained from the lower boundary-layer
equations and conditions (2.20):

P̃
∗
=

−γ

(ik)1/3
(A∗ + F∗), (3.3)

and from the pressure relation (2.21) we have

P∗ = P̃
∗ − σk2A∗. (3.4)
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Eliminating the transforms of the pressures P∗ and P̃
∗

from (3.2)–(3.4) and inverting
the Fourier transform, we obtain an expression for the core streamline displacement
in terms of the membrane displacement:

A(x) = G(x) 
 F(x), (3.5)

where the function G(x) has Fourier transform G∗(k) = − 1
2
(1+σk2(ik)1/3/2γ )−1 and 


represents a convolution.
Further manipulation of these three equations leads to expressions for the two

pressure distributions,

P =
σAxx − G1 
 F

2
, (3.6a)

P̃ =
−σAxx − G1 
 F

2
, (3.6b)

and for the wall-shear perturbations,

τ (x, 0) = −18(6)1/3Ai(0)G2(x) 
 A(x), (3.7a)

τ̃ (x, 0) = 18(6)1/3Ai(0)G2(x) 
 (F(x) + A(x)), (3.7b)

where the functions G1(x) and G2(x) have Fourier transforms

G∗
1(k) = γ /(ik)1/3 and G∗

2(k) = (ik)1/3,

respectively.
When solving the full membrane problem we must couple the membrane equation

(2.22) to the convolution integrals (3.5)–(3.7). The convolving functions are

G(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 3

14
βeβx for x < 0,

3β

7
eβxc sin

(
βxs − 9π

14

)
+

√
3

4π

∫ ∞

0

Re−rx

1 − R + R2
dr, for x > 0,

(3.8a)

G1(x) =

⎧⎨
⎩

0 x < 0,
√

3γΓ (2/3)

2πx2/3
x > 0,

(3.8b)

G2(x) =

⎧⎨
⎩

0 x < 0,
√

3Γ (4/3)

2πx4/3
x > 0,

(3.8c)

where

β =

(
2γ

σ

)3/7

, R =
σ

2γ
r7/3, s = sin(6π/7), c = cos(6π/7).

These are obtained by taking inverse Fourier transforms of G∗(k), G∗
1(k) and G∗

2(k)
respectively.

If Pext �= 0, we see that, in any solution found, the various functions will be
proportional to the external pressure; it is therefore sufficient to consider the two cases
Pext = 0 and Pext �= 0. We note that in the case of zero cross-stream pressure gradient,
where there is no perturbation to the flow upstream of the membrane, these correspond
to zero and non-zero transmural pressure at the upstream end of the membrane.
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3.2. Non-zero upstream transmural pressure

3.2.1. Asymptotically high tension

For large T the membrane equation (2.22) suggests the scaling h = T −1. To leading
order in T −1 the membrane shape is then independent of the flow, and we may
construct an analytic solution as an asymptotic expansion in powers of T −1,

(F, A, P, P̃, τ , τ̃ ) = (F0, A0, P0, P̃0, τ 0, τ̃0) + T −1(F1, A1, P1, P̃1, τ 1, τ̃1) + O(T −2),

for which the membrane and flow equations decouple at each order. The leading-order
membrane shape is quadratic,

F0 =

{
1
2
Pextx(1 − x) for x ∈ (0, 1),

0 for x /∈ (0, 1),
(3.9)

and allows us to find the leading-order approximations for the flow variables A0, P0,
P̃0, τ 0 and τ̃0. Since the expressions obtained are long and unilluminating, they are
not reproduced here; instead the various functions are plotted in figure 2, in which
the effect of varying σ is shown.

When σ = 0, there is no upstream influence exerted on the flow by the membrane
deformation A0 = −F0/2, as expected (see e.g. Smith 1976a), while the pressure and
wall-shear perturbation distributions are the same in the two boundary layers. We
see that the region of adverse pressure gradient and negative wall-shear perturbation
lies around the downstream end of the membrane, indicative of a tendency towards
separation, in both boundary layers, at this position.

As the cross-stream pressure gradient is increased, the amount of upstream
influence, visible in all these functions, increases. The core streamline displacement
decreases in amplitude, increases in streamwise extent and overshoots downstream
before returning to zero. For larger σ the amplitude of the pressure and wall-shear
perturbations are decreased/increased on the upper (i.e. rigid)/lower boundaries.
In particular, the results suggest that the tendency towards reversed flow at the
downstream end of the membrane is decreased/increased in the upper/lower boundary
layer as σ increases and is absent altogether in the upper boundary layer for sufficiently
large σ .

The region around the upstream end of the membrane in the lower boundary
layer also develops an adverse pressure gradient and negative wall-shear perturbation
as σ increases, suggesting that a secondary, weaker, region of reversed flow may
develop there at larger amplitude. The upstream separation for large indentations
was analysed by Smith (1977) and Smith & Duck (1980).

Given the leading-order pressure distribution in the lower boundary layer, P̃0, we
may now evaluate the first correction to the membrane shape caused by this flow.
Again, the function obtained is lengthy but is plotted for various values of σ in figure 3.
As σ increases and causes the reduction in pressure through the constriction to be
confined more and more to the lower boundary layer, the reduction in P̃0 (figure 2b)
leads to a greater deformation in the membrane.

3.2.2. Extension to moderate values of T

We eliminate A and P̃ from (2.22), (3.5) and (3.6b) and integrate twice to produce
an integral equation for F,

T F(x) =

⎧⎨
⎩

G(x) 
 F(x)

2
− Pextx

2

2h
+ T (ax + b) for x ∈ (0, 1),

0 for x /∈ (0, 1),

(3.10)
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Figure 2. Leading-order functions calculated in the limit of large tension: (a) core streamline
perturbation function A0; (b) pressure distributions P0 and P̃0; (c) Wall shear stresses in the
two boundary layers τ 0 and τ̃0, where the solid (dashed) lines give results for the upper (lower)
boundary layer respectively, calculated for σ = 0.001, 0.01, 0.1, 1, 10 and Pext = 1. Each arrow
indicates the direction of increasing σ .

where G(x) = −σG(x) −
∫ x ∫ x ′

G1(x
′′) dx ′′ dx ′, G(x) and G1(x) are given in (3.8), a

and b are constants of integration chosen to satisfy F(0) = F(1) = 0 and 
 represents
a convolution.
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Figure 3. First correction F1 to wall shape, for σ = 0.001, 0.01, 0.1, 1, 10. The arrow indicates
the direction of increasing σ . Note that the curves for the two smallest values of σ are almost
indistinguishable.

The iteration

fn+1(x) =

⎧⎨
⎩

G(x) 
 fn(x)

2T
− Pextx

2

2hT
+ anx + bn for x ∈ (0, 1),

0 for x /∈ (0, 1),

(3.11)

where the constants an and bn are determined by the requirement that fn+1 be zero
at x = 0, 1, gives an equivalent method to that used in the previous section to find
the asymptotic solution: setting f−1 = 0, we recover

f0(x) = F0(x), (3.12a)

f1(x) = F0(x) +
1

T
F1(x), (3.12b)

etc. The iteration may thus be expected to converge for sufficiently large values of
T and may be regarded as an extension of the analytic solution to more moderate
tensions.

Data resulting from the numerical solution of (3.11) are plotted with Pext = 1
(without loss of generality because the problem is linear) in figure 4. Since the shape
of the membrane remains unimodal it is characterized at each value of the tension by
Fmax , the value of F at the point of maximum deflection. As the tension is reduced, the
size of the deformation increases until a value Tc is approached where Fmax becomes
very large and below which the iteration ceases to converge. As shown in figure 4,
this behaviour is fitted empirically by Fmax = c/(T − Tc), suggesting a singularity in
the solution of the steady linearized problem at a finite value of Tc ≈ 0.609. This
will be shown later (§ 4.2) to be the result of the failure of the linearized problem to
capture a turning point in the solution branch.

3.3. Zero upstream transmural pressure

If the transmural pressure at the upstream end of the membrane is zero then the trivial
solution of no membrane deformation and undisturbed Poiseuille flow throughout
the channel, i.e. F = A = P = P̃ = V = Ṽ = 0, U = 6z, Ũ = 6z̃, solves the nonlinear
boundary-layer problem given by (2.11)–(2.15) and (2.17) for all values of the tension
T and the cross-stream pressure-gradient parameter σ . However, non-trivial solutions
are possible for certain values of T .
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Figure 4. Log log plot of T − Tc against Fmax in the case σ = 0, Pext = 1, found by numerical
solution of the iteration relation, showing data points fitted by the line c/(T − Tc); Tc ≈ 0.609.

We expand the membrane deformation F as a half-range Fourier series,

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

∞∑
n=1

fn sin nπx, x ∈ (0, 1),

0 elsewhere,

(3.13)

and show that the two expressions for P̃ deriving from the membrane equation
(2.22) and the flow equations (3.3) and (3.5) lead to an infinite set of nontrivial
eigensolutions.

3.3.1. Negligible cross-stream pressure gradient

When σ is zero, A = −F/2, as has previously been observed. The convolution
expression (3.3) for P̃ thus yields

P̃ = − γ

4π

∫ ∞

−∞

eikxF∗(k)

(ik)1/3
dk, (3.14)

upon inversion of the Fourier transform; evaluating the transform of the Fourier
series expression (3.13) for F(x) this becomes

P̃ = −γ

2

∞∑
m=1

fm

(mπ)1/3

(
sin(mπx − π/6) +

√
3

2π

∫ ∞

0

e−mπxr

r1/3(1 + r2)
dr

)
.

Expressing the terms in the parentheses as a Fourier series we thus obtain our first
Fourier series expression for P̃:

P̃ = −γ

2

∞∑
n=1

∞∑
m=1

fm

(mπ)1/3
bmn sin nπx, (3.15)
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where

bmn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n((−1)n+m − 1)

π(n2 − m2)
+

√
3n

π2

∫ ∞

0

(1 − (−1)ne−mπr )

r1/3(1 + r2)(m2r2 + n2)
dr for m �= n,

√
3

2
+

√
3n

π2

∫ ∞

0

(1 − (−1)ne−mπr )

r1/3(1 + r2)(m2r2 + n2)
dr for m = n.

(3.16)
Another expansion is obtained directly from the membrane equation:

P̃ = −T

∞∑
n=1

n2π2fn sin nπx for x ∈ (0, 1), (3.17)

and, equating the coefficients of sin nπx between these two Fourier series, we have

T f = B f , (3.18)

where the vector f is formed from the Fourier coefficients fn, and the non-symmetric
matrix B has entries

(B)nm =
γ

2n2π7/3m1/3
bmn.

We have thus derived an eigenvalue problem, in which non-trivial eigensolutions of
the linearized problem exist at a discrete set of values Ti and are described by the
vector of their Fourier coefficients f i , where Ti f i = B f i .

The values of the Ti are found numerically by considering the eigenvalues of the
truncated matrices BN , with entries Bmn for 1 � m, n � N , where N increases from 2
to 100. As N increases the number of real eigenvalues seen increases; each converges
rapidly to its final value once it has appeared. The converged values produced by
this method give a sequence T1 > T2 > T3 > · · · > 0 of eigenvalues, listed in order of
appearance as N increases.

This suggests that (3.18) has an infinite decreasing series of real positive eigenvalues.
As the tension decreases, the eigenvalues correspond to higher-mode membrane
shapes. More specifically, the eigenvalue Ti corresponds to a membrane shape with i

extrema.

3.3.2. Non-zero cross-stream pressure gradient

The results for σ �= 0 can be derived in a manner similar to the above. We must
now use the convolution relation (3.5) to obtain the core streamline perturbation in
terms of F , so (3.14) becomes

P̃ =
1

2π

∫ ∞

−∞

−γ eikx

(ik)1/3
(G∗(k) + 1)F∗(k) dk,

= 2G(x) 
 P̃σ=0(x) + 2P̃σ=0(x), (3.19)

where P̃σ=0(x) denotes the solution found the case of negligible cross-stream pressure
gradient (3.15) and G(x) is given by (3.8a). As before, we express this as a Fourier
series and equate coefficients of sin nπx with those in the alternative series (3.17)
derived from the membrane equation, to obtain an infinite eigenvalue problem.

The eigenvalues are again evaluated numerically, the results being shown for a
range of σ and T in figure 5. As σ is increased, pairs of eigenvalues approach and
vanish, starting with those at the smallest values of T , until finally the pair T1, T2

disappears at σ ≈ 2.2. There is then a range of σ where there are no real eigenvalues
until further solution branches start to appear at σ ≈ 40. These large-σ branches,
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Figure 5. The real eigenvalues Ti of the linearized problem shown as σ varies and calculated
for the matrix equation truncated at N = 100. The rightmost curve at each σ gives the
unimodal eigensolution corresponding to T1, values of i are marked and it can be seen that i
increases to the left.

however, invalidate the assumption σ = O(1) made in establishing the boundary-layer
formulation and are unlikely to be physically meaningful. They will not be discussed
further.

4. Numerical solution of the nonlinear problem
4.1. Numerical methods

We use a Keller-box discretization, in which the boundary-layer equations, e.g., (2.11)–
(2.14) are reduced to a set of first-order differential equations by the introduction of
supplementary functions, and a second-order centred-difference scheme is constructed;
see Keller (1971, 1978).

4.1.1. Solution method when σ = 0

When there is no cross-stream pressure gradient, the core streamline displacement
is simply given by half the membrane displacement, A = −F/2, and the problem
reduces to the coupling of the flow in a single boundary layer to the displacement of
the membrane.

The lack of upstream influence means that the flow remains undisturbed until the
start of the membrane at x = 0, where there is a discontinuity in the wall slope, F ′(x).
The effect of this corner is then felt by a sublayer which grows as x1/3 downstream
(Smith 1976a) indicating the need for either a change of variables to capture this
behaviour or for a smaller step size in the region near the corner.

There is no upstream influence, so in cases where there is no flow reversal the
boundary-layer flow over a given wall shape is determined by the upstream conditions
and may be found by marching forwards from x = 0. This idea can be extended: by
specifying the slope of the membrane at its upstream end in addition to requiring
that the displacement be zero there we may determine the evolution downstream of
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the coupled fluid–structure problem and, in particular, the consequent value of F at
x = 1. The condition that the displacement of the membrane is zero at its downstream
end is then satisfied by a shooting algorithm in which the initial slope is varied until
F (x = 1) = 0.

This procedure assumes that the downstream velocity component, U , remains
positive over the entire domain or that the regions of reversed flow are sufficiently
small and weak that the resulting numerical instability leads only to small errors in
the solution. The FLARE approximation (Reyhmer & Flügge-Lotz 1968), in which
the advection of momentum in the reverse direction is neglected by setting uux to zero
whenever its value is negative, was also used to examine its effect upon the results
produced. Since it appears to make little quantitative and no qualitative difference to
the results we conclude that the errors arising from the regions of reversed flow are
not significant.

Our code was tested by verifying quadratic convergence and confirming that the
results at high tension and at zero upstream transmural pressure agree with those
obtained from the linearized analyses. Figure 6 shows results spanning the range of
parameter values for which the code was employed; the regions of parameter space
in which reversed flow was produced are shown. This demonstrates the parameter
ranges over which the code works.

4.1.2. Solution method when σ �= 0

The addition of a cross-stream pressure gradient to the problem means that we
must now solve the full, coupled, pair of boundary-layer problems over a domain
extending sufficiently far up- and downstream that it includes the entire disturbed
region. The interaction between the membrane displacement and the core streamline
perturbation means that a marching algorithm is no longer feasible; instead the
problem is solved directly using Newton’s method over the entire domain. The results
were verified by comparison of the solutions obtained as σ → 0 with those obtained
from the marching method at σ = 0 (which were also repeated using a direct solver).

4.2. Results when σ = 0

The shooting method described in § 4.1.1 was used to perform a parameter study
over a range of values of the external pressure and tension, taking the internal pressure
at the upstream end of the membrane to be zero, in order to discover which values
of the initial slope of the membrane correspond to steady solutions of the problem.
These calculations were then repeated using the direct solution method described in
§ 4.1.2.

From the results found in this study, a series of bifurcation diagrams in (Fx(0),
T )-space was constructed, each at a particular value of the external pressure Pext

(figure 6), where Fx(0) is the slope of the membrane at its upstream end and T is the
tension. Solutions for which the flow is entirely forwards are plotted with a solid line,
while those for which a portion of the flow was found to be reversed are plotted with
a dashed line.

We discuss now the existence and shape of steady solutions as the upstream
transmural pressure Pext ranges from a large positive to a large negative value.

4.2.1. Large positive upstream transmural pressure

When Pext is large and positive (figure 6a), numerical solution of the nonlinear
boundary-layer equations reveals only one branch of solutions. This reaches a
minimum value of the tension at its turning point, (T c, Fx(0)c), which is given by
(1.9), (5.8) to one decimal place for Pext = 10 (figure 6a) and is asymptotic to the
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Figure 6. Bifurcation diagrams with σ = 0 for (a) Pext = 10, (b) Pext = 1, (c) Pext = 0.1, (d)
Pext = 0.01, (e) Pext = −0.01, (f ) Pext = −0.1, (g) Pext = −1 and (h)Pext = −10, each to the
same scale. The membrane slope at the upstream end is plotted against the non-dimensional
tension. The dashed curves indicate solutions in which there are regions of flow reversal.
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Figure 7. The initial slope of the membrane plotted against the tension in the membrane
for Pext = 10. The results calculated via the high-tension asymptotic limit (dashed line) may
be compared with those calculated via the iterative method for the linearized equations
(dot-dashed line) and the numerical solution of the nonlinear boundary-layer equations (solid
line). The iterative and numerical solutions are shown with curves fitted through the calculated
points.

axis Fx(0) = 0 as T becomes large. There is thus a minimum value of the tension at
which a steady solution exists. Figure 10 shows the region of (T , Pext )-space in which
steady solutions exist.

The lower part of the branch in figure 6(a), for which Fx(0)<Fx(0)c, corresponds to
the continuation of the solution found in analytic form in the limit of asymptotically
large tension in § 3.2.1 and then extended down to moderate values of the tension
in § 3.2.2. Figure 7 shows for comparison the relation between the tension in the
membrane and the slope adopted at its upstream end found using the three different
methods discussed, which are as follows.
Asymptotic limit Here we evaluate the initial slope of the membrane by taking the
derivative of the expression (3.9) for the membrane shape, which was obtained by
assuming that the deformation is sufficiently small that the problem may be linearized
and that the tension is sufficiently high that the membrane behaviour is decoupled
from the flow at leading order. This gives ∂F/∂x =Pext/2T at x =0 and is shown by
the dashed (lowest) line in figure 7.
Integral equation The asymptotic solution of the linearized boundary-layer equations
is extended to moderate values of the tension via the iterative form of the integral
equation, as described in § 3.2.2. The results of this process are shown by the dot-
dashed (middle) curve in figure 7.
Numerical solution The nonlinear boundary-layer equations are solved numerically;
see the solid (top) curve in figure 7. As expected, for sufficiently high tension (i.e. for
values of T above 20 or so), the results from the three methods are in good agreement.
Regarding the numerical solution as the most accurate, the integral-equation results
do indeed give an improvement over the asymptotic limit, remaining in agreement
with the numerical results down to a tension of 4 or 3; below this the two curves
diverge as the solution derived from the linearized set of equations fails to capture
the turning point exhibited by the numerical results from the nonlinear equations.

Our understanding of the small-tension behaviour has thus improved from an ex-
pectation of a solution for all values of T (the asymptotic limit applied for arbitrary T )
through an apparent singularity at some finite value of the tension, as discussed
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in § 3.2.2, to an appreciation from the solution of the nonlinear boundary-layer
equations of the fact that this solution branch has a turning point at a finite value of
the tension.

The upper part of the branch found by solution of the nonlinear boundary-layer
equations, for which Fx(0) > Fx(0)c, describes more highly collapsed solutions than
the lower, as shown by the inserts in figure 8. As the branch is followed round
from the lower part to the upper the solution deforms continuously, and we start to
see regions of reversed flow once the value of the initial slope becomes sufficiently
large. When Pext =10 the last point found on the lower section of the branch marks
the onset of flow reversal; for the smaller values of the external pressure shown,
the membrane is not sufficiently deformed on the lower section of curve to cause the
flow to reverse. The onset of reversal is thus postponed until some distance along the
upper part of the branch (figures 6a, b).

4.2.2. Upstream transmural pressure decreasing towards zero

As the positive external pressure is decreased towards zero, additional solution
branches appear at lower values of the tension (figures 6b–d), which correspond to
higher-mode solutions of the system (figure 8). Since the amplitude of the membrane
deformation increases towards the downstream end, as may be seen in the insets on the
left of figure 8, the value of the maximum of F (x) increases more rapidly with Fx(0) for
higher-mode branches. This means that reversal occurs at a smaller value of |Fx(0)|
as successively higher-mode branches are considered, as may be seen in figure 6.

Each branch appears initially as a small loop of solutions; as Pext is gradually
decreased these spread to produce the apparently open branches shown in figure 6(b).
The emergence and initial spreading of the first branch as Pext is reduced from 1.9
to 1.7 is shown in figure 9(a) and the appearance of the second as the first continues
to spread in figure 9(b). The two branches initially appear at slightly different values
of Pext and T , the first at (Pext , T , Fx(0)) ≈ (1.83, 0.055, −0.5) and then the second
at (Pext , T , Fx(0)) ≈ (1.59, 0.028, −0.5). Since the code does not converge for large
values of |Fx(0)| or for very small values of T , the behaviour of some sections of
branches in these regions is not known.

Typical shapes assumed by the membrane on each of the branches present when
Pext = 1 are seen in the inserts in figure 8. These are all plotted on the same axes, x

ranging from 0 to 1 on the abscissa and F ranging from −2.5 to 5 on the ordinate.
Each shows:

(i) the membrane shape
(ii) the streamlines, the same values of the stream function being plotted in each

insert; those illustrating distended regions of the membrane each show some degree
of flow reversal; in no case has the numerical instability grown large enough to be
visible

(iii) the contours of dissipation; the dissipation is reduced in distended regions and
increased over collapsed regions

The qualitative form of the membrane shape adopted by any given solution may
be described in terms of the number and order of the local maxima and minima of
the function F (x). As any given branch is followed from negative values of Fx(0) to
positive, we either gain an additional local maximum or lose a local minimum as
Fx(0) passes through zero. The mode of the membrane shape thus either increases
or decreases by unity, depending upon the sign of the upstream transmural pressure,
Pext − P̃ (0) = Pext , and thus upon the sign of the curvature of the membrane at
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Figure 8. Solutions for Pext = 1. The main figure is a larger version of figure 6(b). The inserts
are all plotted on the same scale, showing the solutions calculated at the points indicated
by circles. Each insert shows the membrane shape, a few streamlines and some contours of
dissipation (dashed lines). Note the regions of reversed flow in two cases where the membrane
bulges out (top left and bottom).
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Figure 9. Bifurcations at which the first pair of low-tension branches appear. Data plotted
for (a) branch 1, Pext = 1.83, 1.8, 1.7, 1.5 and 1.2 and (b) branch 2, Pext = 1.59, 1.56, 1.5 and
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Figure 10. The boundary in the (Pext , T )-plane between parameter values for which a solution
exists and those for which it does not. The points plotted are extracted from the numerical
data, while the curve shows part of the function 6(T c − 0.60859)2, where T = 0.60859 is the
value of the first global bifurcation point, as shown in figure 11.

its upstream end. The downstream end of the membrane, however, remains either
collapsed or dilated over the whole of the solution branch.

The mode of the solution adopted increases as branches at smaller and smaller
tension are considered. Hence, as Pext is reduced towards zero, branches corresponding
to successively higher-mode solutions appear.

For all positive Pext there is a range of tensions for which no steady solutions exist.
The evolution of this region as the upstream transmural pressure decreases towards
zero is plotted in figure 10, in which the local maximum at small values of the tension
shows the appearance of the first low-tension branch. From this we see that the values
of (T c, P c

ext ) to the right of the minimum at T ≈ 0.6, i.e. the turning points of the
high-tension branch of solutions (figure 6a), are well fitted empirically by the function
P c

ext = 6(T c − T1)
2, where T1 is the tension at the first global bifurcation point.

4.2.3. Zero upstream transmural pressure

When the upstream transmural pressure is zero, the trivial solution is valid for all
values of the tension. The presence of this line of solutions may be inferred from
figure 6 by the fact that the deformation of the solution branches tends to form a line
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Figure 11. Bifurcation diagram plotted for Pext = 0 (dots) plus eigenvalues calculated from
the search for non-trivial Fourier series solutions of the linearized problem (circles).

along Fx(0) = 0 as the value of Pext tends towards zero from either above or below,
with a series of simultaneous global bifurcations at points Ti along the axis Fx(0) = 0,
where pairs of branches collide.

These Ti thus give the small-deformation limit of the non-trivial solutions present
when Pext = 0 and hence correspond to the eigenvalues found when seeking non-
trivial Fourier-series solutions to the linearized system of equations in the case when
Pext = 0, discussed in § 3.3. Figure 11 shows the eigenvalues found in § 3.3, given by
the circles marked along the Fx(0) = 0 axis, and the bifurcation diagram plotted for
Pext = 0 from the numerical solution of the nonlinear boundary-layer equations. The
positions of the eigenvalues compare well with the positions of the global bifurcation
points.

The modes of the solutions predicted on the various solution branches by the
Fourier-series analysis of the linearized system of equations are seen to agree with
those produced by the numerical solution of the nonlinear boundary-layer equation.

4.2.4. Negative upstream transmural pressure

When Pext is further reduced below zero, the connection between the branches is
seen to alter at each of the global bifurcation points (compare figures 6d and 6e, which
give the diagrams for Pext = 0.01 and −0.01 respectively), so that the bifurcation
diagram has a qualitatively different structure depending upon whether the upstream
transmural pressure is positive or negative.

As the magnitude of Pext increases, the solution branches continue to deform and
vanish (figures 6e–h), starting with those corresponding to higher modes, until just
two solution branches remain (figure 6h) at large negative values of Pext . It appears
that steady solutions exist for all values of the tension although the deformation
becomes too large to be captured by the methods used here over some ranges of the
tension. We note in particular that unimodal collapsed solutions exist for all values
of the upstream transmural pressure, for T sufficiently large.

4.3. Results when σ �= 0

When the cross-stream pressure gradient is not negligible, the coupled boundary-layer
problem must be solved using a direct method of solution over a sufficiently long
domain that the flow at the up- and downstream ends is undisturbed.

The effect of the cross-stream pressure gradient on the flow is shown in figure 12, in
which a comparison between the streamlines and dissipation contours when σ = 0.01
and σ = 1 is shown. The results are plotted for both the top and bottom boundary
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Figure 12. Streamline and dissipation contours for the two boundary layers when Pext = −1.0,
T = 0.63733 and (a) σ = 1, (b) σ = 0.01. In each case the lower half of the figure shows the
flow in the lower boundary layer while the upper half shows the flow in the upper boundary
layer.

layer and were calculated for T = 0.63733 and Pext = −1.0 at the points indicated
in figure 13. As the cross-stream pressure gradient is increased, the sharp corners in
the core streamline displacement at the beginning and end of the membrane section
are smoothed. The disturbance to the upper boundary layer is noticeably less, with
both a much smaller and smoother disturbance to the streamlines and a reduction in
the amount of dissipation there. The region of increased dissipation extends further
downstream for smaller σ . The general shape of the region of dissipation agrees with
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that shown by Luo & Pedley (1998) although their work concerns unsteady flow
past a deformation of size comparable with the channel width. In particular, the
correlation of dissipation with vorticity leads to regions of high dissipation on the
walls in the constricted region and tongues extending downstream.

Figure 13 shows the variation in the bifurcation diagram in (Fx(0), T )-space plotted
for Pext = 1, 0.1, −0.1 and 1 as σ is increased from zero. When σ is non-zero only the
branches at higher values of the tension have been plotted since these are sufficient
to illustrate the behaviour.

Increasing the value of σ has little qualitative effect on the form of the bifurcation
diagrams in the parameter range examined. In general the various branches are
collapsed towards the horizontal axis and move to slightly higher values of the
tension.

We note, however, that the pressure in this calculation is fixed at the upstream end
of the flow domain rather than at the start of the membrane section. In the studies
with negligible cross-stream pressure gradient the pressure was fixed at the upstream
end of the membrane section because in this case there is no pressure drop prior to
reaching the start of the membrane. Consequently, the position at which the pressure
is considered to be fixed when comparing the results is some distance upstream of
the membrane.

If the wall deformation (a constriction, say) were specified and σ reduced while
holding the transmural pressure far upstream constant, this would lead to a reduction
in the internal pressure at the upstream end of the deformation since the flow
experiences a greater degree of adjustment upstream of the obstacle. A more positive
transmural pressure, i.e. larger Pext , would then lead to a greater curvature of the
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membrane inwards and hence suggests that a smaller value of the initial slope will
be required for a solution.

4.4. Downstream transmural pressure

The transmural pressure at the downstream end of the membrane for the data set
described in § 4.2 is plotted in figure 14. The sign of the downstream transmural
pressure depends upon whether the membrane is collapsed or dilated at the
downstream end; as previously observed, the sign is fixed over any given solution
branch. Thus, the downstream transmural pressure is bounded away from zero for
all solutions except the trivial one, and there are no eigenmode solutions at zero
downstream transmural pressure as there are when Pext = 0. Solutions that include
regions of reversed flow are indicated by dashed lines, as in figure 6.

It is noticeable that the branches at negative downstream transmural pressure, i.e.
those dilated at the downstream end, appear to have a minimum attainable value
of the downstream transmural pressure for any given value of Pext . The branches
terminate when the membrane deformation and degree of flow reversal become
excessive and the solution fails to converge. This suggests that lower (more negative)
values of the downstream transmural pressure will arise only for membrane shapes
whose distortion is too great for this method to converge.

Consideration of these results indicates that the behaviour of the system when the
downstream transmural pressure is held fixed will be significantly different from that
described in § 4.2 for fixed upstream transmural pressure. Graphs of the predicted
behaviour are shown in figure 15. These show the form of the solution branches
in the (T , Fx(0))-plane, for given values of the downstream transmural pressure.
The available data points are shown, and the curves joining them are extrapolated
from knowledge of the general behaviour of the system. While we have reasonable
confidence in the curves for small absolute values of the downstream transmural
pressure, the larger negative values in particular are not expected to be accurate,
in particular the large loops on the Pext − P (1) = −2 curve. Moreover, as indicated
above, large negative values of the downstream transmural pressure will be associated
with deformations larger than this method can handle.

In contrast with the behaviour seen when the upstream transmural pressure is fixed,
the available data appear to indicate that solutions exist at all values of the tension for
each value of the downstream transmural pressure. As the solution branch is followed
from high to low tension, the mode of the solution increases; each time the upstream
gradient passes through zero, a further extremum is added into the membrane shape.
Furthermore, for Pext sufficiently negative there appear to be ranges of the tension
for which the solution is non-unique.

5. Discussion
5.1. Summary of findings

Application of a combination of analytic and numerical techniques to a high-
Reynolds-number long-wavelength asymptotic analysis of the steady flow in a two-
dimensional collapsible channel has revealed the rich structure of this part of the
solution space. This has been examined in most detail at zero cross-stream pressure-
gradient σ , when the solutions in the upper and lower boundary layers are identical.

The bifurcation structure is considered first for fixed upstream transmural pressure,
Pext , and variable tension. When Pext is zero, the trivial solution undergoes an
apparently infinite sequence of transcritical bifurcations as the tension is reduced
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Figure 14. Downstream transmural pressure produced by each of the solutions shown in
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towards zero. At non-zero upstream transmural pressure, the symmetry is broken and
as its magnitude increases the low-tension branches are sequentially eliminated in a
series of bifurcations until only one (two) branches remain for positive (negative) Pext .
This gives rise to ranges of the tension for which no steady solution exists under the
imposed restrictions.

The behaviour of the system on fixing the downstream transmural pressure and
varying the tension is very different. The (incomplete) results suggest that solutions
exist for all values of the tension and downstream transmural pressure difference,
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becoming non-unique for downstream transmural pressures below some (negative)
threshold; we recall that negative transmural pressure corresponds to a membrane
that is distended at the downstream end. Very negative downstream transmural
pressure is associated with membrane deformations greater than can be handled with
this method, although a qualitative indication of the expected behaviour may be
extrapolated from the results for smaller deformations.

When the cross-stream pressure gradient is non-zero, the first few branches in the
bifurcation diagrams appear qualitatively similar. Linearized analysis, however, shows
that the number of transcritical bifurcations from the trivial solution occurring at
zero upstream transmural pressure reduces with increasing σ , the last pair vanishing
at σ ≈ 2.2. This suggests that progressively fewer branches will be present at higher
values of σ ; the nonlinear results presented here at non-zero σ cover only branches
that remain in existence for the range of σ considered.

We have also demonstrated that, in general, the leading-order contribution to the
dissipation in the system has contributions both from the original Poiseuille flow and
from the boundary layers. The dissipation arising from perturbations in the core is
a higher-order term. Further, the greatest boundary-layer dissipation typically occurs
over inward-sloping-wall regions, where the flow is being constricted. This contrasts
with the assumption used in some previous models, e.g. that of Cancelli & Pedley
(1985), that a turbulent jet is produced downstream of the constriction, the bulk of
the dissipation occurring in this region.

5.2. Comparison with Navier–Stokes computations

The previous work most closely related to this paper is that of Luo & Pedley (2000)
(referred to henceforth as LP), because there too the upstream transmural pressure
difference was prescribed while the (steady) flow rate through the system was varied.
There are, of course, many differences: in LP the membrane length was only five
times the channel width, the Reynolds-number range was limited (up to 1000) and
the membrane displacement was large. Nevertheless, multiple steady states were found
in some parameter ranges and it is worth examining in more detail whether they may
be related to those found here.

The type of non-uniqueness found by LP is most easily seen in plots such as those in
figure 16, in which the Reynolds number Re is plotted against the pressure difference
P L

ud between the upstream and downstream ends of the channel, the different curves
being for different values of the upstream transmural pressure difference, P L

ue (the
superfix L refers to the non-dimensionalization in LP). When that quantity is large
enough, the computation reveals three possible steady flows for a finite, or in some
cases possibly infinite, range of values of P L

ud . The membrane tension is the same
for all the curves. The three branches of solution correspond to different membrane
shapes: on the uppermost branch, the membrane is everywhere displaced outwards;
on the lowest branch it is indented either everywhere or over most of its length;
and on the middle branch it is also always indented at the downstream end, and
sometimes everywhere (see figure 17 for an example).

To compare parameter values between this work and that of LP, we need to take
note of the different non-dimensionalizations of membrane tension and of external
pressure, and also of the effects of the inclusion of rigid segments up- and downstream
of the membrane section (with lengths of 5 and 30 channel widths respectively). In
the present paper the dimensional tension T̂ is given by

T̂ = ρŪ 2aλ2εT = ρŪ 2a(λ7/Re)1/3T , (5.1a)
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from (2.5), the line below (2.17) and (2.8). LP, however, took

T̂ = ρŪ 2aT̃0/Re2β, (5.1b)

where T̃0 ≈ 1.61 × 107 and β was the parameter that varied as T̂ was varied. Note
that the Reynolds-number dependence means that fixing β is equivalent to fixing T̂ ,
independent of the flow rate. Combining (5.1a) and (5.1b) we obtain

T = λ−7/3Re−5/3T̃0/β.

The non-dimensionalizations of pressure, in this work and LP respectively, are

p̂ = ρŪ 2ε2P and p̂ = ρŪ 2P L/Re2, (5.2)

whence, using (2.8),

P = λ−2/3Re−4/3P L.

The quantity held constant on the curves of figure 16 is

P L
ue = P L

u − P L
e ,

where P L
e is the (scaled) external pressure and P L

u is the (scaled) pressure at the
channel entrance, which is five channel widths upstream of the start of the membrane
and was taken to be zero. For comparison with the current study, we require

P L
ext = P L

e − P L
0 ,

where P L
0 is the internal pressure at the upstream end of the membrane. The viscous

pressure drop in the rigid segment is approximately that given by Poiseuille flow (a
Poiseuille profile is assumed at the entrance). Thus

P L
ext ≈ 60Re − P L

ue.

We cannot expect to get a good comparison of the driving pressure difference, since
the pressure drop in the downstream rigid section is unknown. If, however, we use a
Poiseuille pressure drop as a crude approximation, we may approximate the pressure
drop along the membrane section, P01, by

P L
01 ≈ P L

ud − 420Re.

In the present analysis, moreover, the Poiseuille pressure gradient is formally a higher-
order term and is neglected. We may therefore consider the Poiseuille pressure drop
over the length of the membrane, P L = 60Re, to give an indication of the expected
inaccuracy of any comparison.

Hence, if we consider the curves P L
ue = 0.896 × 105 in figure 16 and choose

Re = 500, λ = 5 we see that there are two solutions, for which

Pext ≈ −5.14, ε ≈ 0.215,

and P L
ud is approximately equal to 2.3 × 105 or 2.8 × 105, i.e.

P (x = 1) ≈ 1.7 or 6.0.

We expect a disagreement of the order of P L = 60Re (P = 2.6) between these figures
and those from the current boundary-layer analysis. Moreover, β = 35 corresponds
to

T ≈ 0.342,

which is quite a small value. Thus the two possible flows for Re = 500 should be
found on a bifurcation diagram between our figures 6(g) and 6(h). Such a diagram is
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plotted in figure 18; the lower solution branch does not extend quite to T = 0.342 but
the reason is that the membrane has become too deformed for our analysis. We may
therefore conclude that there are indeed two solutions indicated at T = 0.342, with
P (1) ≈ 2.8 or −10.7. Since |Pext| /T is around 15, rather than O(1) as required for
our nonlinear analysis let alone � 1 as required for the linearized analysis (see (2.17)
and (2.22)), the agreement with the values obtained via the crude approximation from
LP is not particularly good, but the disagreement is of the order predicted.

For higher Re, Pext and T are both smaller for the same values of β and P L
ue;

for lower Re, they are larger. As T is reduced (i.e. β or Re increased), solutions on
the rightmost branch in figure 6(a–c) cease to exist at a critical value of T . This
is equivalent to the non-existence of solutions in figure 16 for P L

ue � 0.27 as Re is
increased above a given value. In particular we note that positive values of Pext arise
only for (a) negative values of P L

ue at small Reynolds number (Re < 200) and (b)
large P L

ue and Reynolds number.
We may conclude with some confidence that the steady solutions computed by LP

from the full Navier–Stokes equations are equivalent to solutions on those branches
of our diagrams, derived from the boundary-layer equations, that persist at large
external pressure.

5.3. Stability

The stability of the solutions found in this paper has not yet been considered. It might
be expected that the high-tension branch would be the most likely to be stable, and
many of the other branches unstable, but this requires investigation. We note that
LP did compute the stability of their solutions and found that whether a flow was
stable could depend on whether the upstream pressure or the upstream flow rate was
held constant, the latter being more likely to lead to stability on the lowest solution
branch (figure 16). In general solutions on the upper or leftmost branch, on which
the flow rate increases with P L

ud for all P L
ue, are stable.

We also recall that Jensen & Heil (2003) found stability whenever the inflow rate
was held fixed and instability for fixed upstream pressure only if the length of the
rigid part of the channel downstream, L2, was greater than that upstream, L1. For
comparison purposes, we note that the critical Reynolds number for instability, when
L2 > L1, was given by Jensen & Heil (2003) as

Rec ≈ r2
c0(T

J )1/2,
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Reynolds number Re = Ūa/ν ∝ Ū

boundary layer thickness ε = (λ/Re)1/3 ∝ Ū−1/3

cross-stream pressure gradient σ = 6/5λ2ε ∝ Ū 1/3

pressure P = ε−2ρ−1Ū−2p̂ ∝ Ū−4/3p̂

tension T = ε−1ρ−1Ū−2λ−2a−1T̂ ∝ Ū−5/3T̂

velocity U = ε−1Ū−1û ∝ Ū−2/3û

location of membrane F = F̂ /aε ∝ Ū 1/3 F̂

Table 1. Relation of boundary-layer parameters and variables to dimensional quantities.

where T J is their dimensionless tension (= T̂ /ρŪ 2a in the notation of this paper),
and rc0 is a constant that depends on L1 and L2 and is supposedly O(1) as T J → ∞.
In our notation this gives

Rec ≈ r2
c0T

1/2λ (λ/Rec)
1/6 ,

i.e.

Rec ≈ r
12/7
c0 T 3/7λ.

Alternatively, for a given Re, the critical tension below which the flow is unstable is
given by

Tc = r−4
c0 (Re/λ)7/3 . (5.3)

For Re = 500 and λ = 5 and rc0 in the range 3 to 10, as suggested by the results
of Jensen & Heil, this gives Tc in the range 4.6 × 104 down to 570. The asymptotic
theory of Jensen & Heil is valid only if T J � Re, and these numbers confirm that
their theory applies at much larger values of T than those considered here.

5.4. Implications for experiment

It would be desirable to compare the results of this paper, those of LP and those of
Jensen & Heil (2003) with a suitable experiment. However, it has proved very difficult
to set up a two-dimensional or annular experiment, even approximately (Ikeda et al.
1998); experiments are easy to set up only in tubes, not channels. Nevertheless, it is
worth considering what parameter values it might be possible to achieve in principle.
The difficulty, as we shall see, would be in finding a material for the membrane that
can be stretched flat with a sufficiently low value of tension, at least when the working
fluid is water.

For a fixed channel geometry and working fluid, the quantities λ, a, ρ and ν are
constants and cannot be changed during an experiment. However, the external and
upstream (or downstream) pressure, the membrane tension and the Reynolds number
can all be varied. The relevant dimensionless parameters and variables are listed in
table 1, from which the relations between them can be seen. In particular, we note
that our scalings mean that all variables vary with the inlet flow velocity Ū , so our
study can be best thought of as corresponding to a fixed flow velocity (or Re) and
variable P̂ext and T̂ . We should also recall that the validity of the boundary-layer
theory requires that Re and λ satisfy 1 � λ � Re � λ7.

In the attempted experiments of Ikeda et al. (1998), water was the working fluid
(ρ = 103 kg m−3, ν ≈ 10−6 m2 s−1), the channel width a was 5 mm, λ took the value
5, and Reynolds numbers of several hundred were employed. Taking Re = 500, this
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gives Ū = 0.1 m s−1. The corresponding values of T̂ and p̂ext, from (5.1a) and (5.2), are

T̂ = 0.27T Nm−1, p̂ext = 0.46Pext Pa.

Noting that the surface tension of water in air is about 7 Nm−1, and the tension
in a thin latex membrane of Young’s modulus 5 × 105 Pa, thickness 0.5 mm and
stretch ratio 1.1 is about 25 N m−1, it is clear that the value of T corresponding to
a feasible experiment would have to be considerably larger than the values that have
proved to be most interesting here. Similarly, since 1 cm H20 corresponds to 100 Pa,
|Pext | would normally be very large too, if it were not zero. The only way to make
the tension and pressures feasible is to increase Ū significantly, and if the Reynolds
number is not to be changed this requires the use of a much more viscous fluid.

The authors would like to thank the Engineering and Physical Sciences Research
Council for their support while this work was performed in the late 1990s: J. C. G.
for a Research Studentship and T. J. P. for a Senior Fellowship.
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